Skip to contents

NOTE: If you are viewing this page via CRAN note that the main GGIR documentation has been migrated to the GGIR GitHub pages.

GGIR generates the following types of output:

  • csv-spreadsheets with all the variables you need for physical activity, sleep and circadian rhythm research
  • Pdfs with on each page a low resolution plot of the data per file and quality indicators
  • R objects with milestone data
  • Pdfs with a visual summary of the physical activity and sleep patterns as identified (see example below)

GGIR Part 1

GGIR part 1, only outputs RData files which are used by GGIR part 2. The RData files are not intended for direct use by the GGIR user.

GGIR Part 2

Part 2 generates the following output:

  • part2_summary.csv: Person level summary (see below)
  • part2_daysummary.csv: Day level summary (see below)
  • QC/data_quality_report.csv: Overview of calibration results and whether or not a file was corrupt or too short to be processed,
  • QC/plots to check data quality 1.pdf: A pdf with visualisation of the acceleration time series in 15 minute resolution and with invalid data segments highlighted in colours (yellow: non-wear based on standard deviation threshold, brown: non-wear after extra filtering step (introduced in 2013), and purple: clipping)

Person level summary (csv)

(Part of) variable name Description
ID Participant id
device_sn Device serial number
bodylocation Body location extracted from file header
filename Name of the data file
start_time Timestamp when recording started
startday Day of the week on which recording started
samplefreq Sample frequency (Hz)
device Accelerometer brand, e.g. GENEACtiv
clipping_score The Clipping score: Fraction of 15 minute windows per file for which the acceleration in one of the three axis was close to the maximum for at least 80% of the time. This should be 0.
meas_dur_dys Measurement duration (days)
complete_24hcycle Completeness score: Fraction of 15 minute windows per 24 hours for which no valid data is available at any day of the measurement.
meas_dur_def_proto_day measurement duration according to protocol (days): Measurement duration (days) minus the hours that are ignored at the beginning and end of the measurement motivated by protocol design
wear_dur_def_proto_day wear duration duration according to protocol (days): So, if the protocol was seven days of measurement, then wearing the accelerometer for 8 days and recording data for 8 days will still make that the wear duration is 7 days
nonwear_hours_filtered Total number of nonwear hours filtered, only stored when using parameter nonwearFiltermaxHours
nonwear_events_filtered Total number of nonwear events filtered, only stored when using parameter nonwearFiltermaxHours
calib_err Calibration error (static estimate) Estimated based on all ‘non-movement’ periods in the measurement after applying the autocalibration.
calib_status Calibration status: Summary statement about the status of the calibration error minimisation
n hours ignored at start of meas (if data_masking_strategy=1, 3 or 5) number of hours ignored at the start of the measurement (if data_masking_strategy = 1) or at the start of the ndayswindow (if data_masking_strategy = 3 or 5) A log of decision made in part2.R
n hours ignored at end of meas (if data_masking_strategy=1, 3 or 5) number of hours ignored at the end of the measurement (if data_masking_strategy = 1) or at the end of the ndayswindow (if data_masking_strategy = 3 or 5). A log of decision made in part2.R
n days of measurement after which all data is ignored (if data_masking_strategy=1) number of days of measurement after which all data is ignored (if data_masking_strategy = 1, 3 or 5) A log of decision made in part2.R
epoch size to which acceleration was averaged (seconds) A log of decision made in part1.R
pdffilenumb Indicator of in which pdf-file the plot was stored
pdfpagecount Indicator of in which pdf-page the plot was stored
data_masking_strategy A log of the decision made when calling g.impute: value=1 mean ignore specific hours; value=2 mean ignore all data before the first midnight and after the last midnight

Letter codes to indicate aggregation type

(Part of) variable name Description
AD_ All days (plain average of all available days, no weighting). The variable was calculated per day and then averaged over all the available days
WE_ Weekend days (plain average of all available days, no weighting). The variable was calculated per day and then averaged over weekend days only
WD_ Week days (plain average of all available days, no weighting). The variable was calculated per day and then averaged over week days only
WWE_ Weekend days (weighted average) The variable was calculated per day and then averaged over weekend days. Double weekend days are averaged. This is only relevant for experiments that last for more than seven days.
WWD_ Week days (weighted average) The variable was calculated per day and then averaged over week days. Double week days were averaged. This is only relevant for experiments that last for more than seven days)

Distribution of acceleration

(Part of) variable name Description
ENMO_fullRecordingMean ENMO is the main summary measure of acceleration. The value presented is the average ENMO over all the available data normalised per 24-hour cycles (diurnal balanced), with invalid data imputed by the average at similar time points on different days of the week. In addition to ENMO it is possible to extract other acceleration metrics (i.e. BFEN, HFEN, HFENplus). We emphasize that it is calculated over the full recording because the alternative is that a variable is only calculated overmeasurement days with sufficient valid hours of data.
ENMO (only available if set to true in part1.R) ENMO is the main summary measure of acceleration. The value presented is the average ENMO over all the available data normalised per 24 hour cycles, with invalid data imputed by the average at similar timepoints on different days of the week. In addition to ENMO it is possible to extract other acceleration metrics in part1.R (i.e. BFEN, HFEN, HFENplus) See also van Hees PLoSONE April 2013 for a detailed description and comparison of these techniques.
pX_A_mg_0-24h_fullRecording This variable represents the Xth percentile in the distribution of short epoch metric value A of the average day. The average day may not be ideal for describing the distribution. Therefore, the code also extracts the following variable.
AD_pX_A_mg_0-24h This variable represents the Xth percentile in the distribution of short epoch metric value A per day averaged across all days.
WWD_MVPA_E5S_T100_ENMO Time spent in moderate-to-vigorous based on 5 second epoch size and an ENMO metric threshold of 100
WWE_MVPA_E5S_B1M80%_T100_ENMO Time spent in moderate-to-vigorous based on a bout criteria of at least 1 minute where 80% or more of the 5 second epochs are expected to meet the threshold criteria of of 100 mg based on acceleration metric ENMO (threshold is specified with parameter mvpathreshold)
WE_[100, 150)_mg_0-24h_ENMO Time spent between (and including) 100 mg and 150 (excluding 150 itself) between 0 and 24 hours (the full day) using metric ENMO data exclusion data_masking_strategy (value=1, ignore specific hours; value=2, ignore all data before the first midnight and after the last midnight)
_MVPA_E5S_B1M80_T100 MVPA calculated based on 5 second epoch setting bout duration 1 Minute and inclusion criterion of more than 80 percent.
_ENMO_mg ENMO or other metric was first calculated per day and then average according to AD, WD, WWE, WWD

Circadian rhythm: MXLX, IV, and IS

(Part of) variable name Description
L5_A_mg_0-24 Average of metric A during the least active five* hours in the day that is the lowest rolling average value of metric A. (* window size is modifiable by argument winhr)
M5_A_mg_0-24 Average of metric A during the most active five* hours in the day that is the lowest rolling average value of metric A. (* window size is modifiable by argument winhr)
L5hr_A_mg_0-24 Starting time in hours and fractions of hours of L5_A_mg_0-24, where hours below 12 are incremented with 24 to create a continuous scale throughout the night (e.g. 36 = 6am) in line with numeric timeing of sleep variables in GGIR part 4 output.
M5hr_A_mg_0-24 Starting time in hours and fractions of hours of M5_A_mg_0-24
ig_gradient_ENMO_0 -24hr_fullRecording Intensity gradient calculated over the full recording.
1to6am_ENMO_mg Average metric value ENMO between 1am and 6am
N valid WEdays Number of valid weekend days
N valid WKdays Number of valid week days
IS inter daily stability. The movement count that is derived for this was an attempt to follow the original approach by Eus J. W. Van Someren (Chronobiology International. 1999. Volume 16, issue 4).
IV intra daily variability. In contrast to the original paper, we ignore the epoch transitions between the end of a day and the beginning of the next day for the numerator of the equation, this to make it a true measure of intradaily variability. Same note as for IS: The movement count that is derived for this was an attempt to follow the original approach.
IVIS_windowsize_minutes Sizes of the windows based on which IV and IS are calculated (note that this is modifiable)
IVIS_epochsize_seconds Argument has been deprecated
phi Indicator of auto-correlation in acceleration time series over multiple days, see chapter 13 for details.
SSP Method for describing time series, see chapter 13 for details.
ABI ABI measures how the activity over the observed period is balanced, see chapter 13 for details.

Circadian rhythm: Cosinor

(Part of) variable name Description
cosinor_ Cosinor analysis estimates such as mes, amp, acrophase, and acrotime, as documented in the ActCR package.
cosinorExt_ Extended Cosinor analysis estimates such as minimum, amp, alpha, beta, acrotime, UpMesor, DownMesor, MESOR, and F_pseudo, as documented in the ActCR package.
cosinorIV Cosinor analysis compatible estimate of the Intradaily Variability (IV)
cosinorIS Cosinor analysis compatible estimate of Interdaily Stability (IS)
cosinor_timeOffsetHours Offset between start time series as used and midnight
cosinor_mes The mean value of the cosinor function fitted to the log transformed acceleration signal. Higher values indicate more activity.
cosinor_amp The amplitude of the cosinor function fitted to the log transformed acceleration signal, corresponding to the peak of the function minus the mesor. Higher values indicate larger amplitude in the rhythm
cosinor_acrotime Time at which the cosinor function fitted to the log transformed acceleration signal reaches its maximum
cosinor_acrophase Acrotime expressed in radians
cosinor_ndays Number of days used for the cosinor analysis.
cosinor_R2 Measure of goodness of fit of the cosinor function to the log transformed acceleration signal. Higher values indicate better goodness of fit.
cosinorExt_minimum (copied from ActCR documentation) Minimum value of the function
cosinorExt_amp (copied from ActCR documentation) Amplitude, a measure of half the extend of predictable variation within a cycle. This represents the highest activity one can achieve.
cosinorExt_alpha (copied from ActCR documentation) It determines whether the peaks of the curve are wider than the troughs: when alpha is small, the troughs are narrow and the peaks are wide; when alpha is large, the troughs are wide and the peaks are narrow.
cosinorExt_beta (copied from ActCR documentation) It dertermines whether the transformed function rises and falls more steeply than the cosine curve: large values of beta produce curves that are nearly square waves.
cosinorExt_acrotime (copied from ActCR documentation) acrophase is the time of day of the peak in the unit of the time (hours)
cosinorExt_UpMesor (copied from ActCR documentation) Time of day of switch from low to high activity. Represents the timing of the rest- activity rhythm. Lower (earlier) values indicate increase in activity earlier in the day and suggest a more advanced circadian phase.
cosinorExt_DownMesor (copied from ActCR documentation) Time of day of switch from high to low activity. Represents the timing of the rest-activity rhythm. Lower (earlier) values indicate decline in activity earlier in the day, suggesting a more advanced circadian phase.
cosinorExt_MESOR (copied from ActCR documentation) A measure analogous to the MESOR of the cosine model (or half the deflection of the curve) can be obtained from mes=min+amp/2. However, it goes through the middle of the peak, and is therefore not equal to the MESOR of the cosine model, which is the mean of the data
cosinorExt_ndays (copied from ActCR documentation) Number of days modeled.
cosinorExt_F_pseudo (copied from ActCR documentation) Measure the improvement of the fit obtained by the non-linear estimation of the transformed cosine model
cosinorExt_R2 Measure of goodness of fit of the extended cosinor function to the log transformed acceleration signal. Higher values indicate better goodness of fit.

Day level summary (csv)

This is a non-exhaustive list, because most concepts have been explained in summary.csv

(Part of) variable name Description
ID Participant id
filename Name of the data file
calender_date Timestamp and date on which measurement started
bodylocation Location of the accelerometer as extracted from file header
N valid hours Number of hours with valid data in the day
N hours Number of hours of measurement in a day, which typically is 24, unless it is a day on which the clock changes (DST) resulting in 23 or 25 hours. The value can be less than 23 if the measurement started or ended this day
weekday Name of weekday
measurement Day of measurement Day number relative to start of the measurement
L5hr_ENMO_mg_0-24h Hour on which L5 starts for these 24 hours (defined with metric ENMO)
L5_ENMO_mg_0-24h Average acceleration for L5 (defined with metric ENMO)
[A,B)_mg_0-24h_ENMO Time spent in minutes between (and including) acceleration value A in mg and (excluding) acceleration value B in mg based on metric ENMO
ig_gradient_ENMO_0-24hr Gradient from intensity gradient analysis proposed by Rowlands et al. 2018 based on metric ENMO for the time segment 0 to 24 hours
ig_intercept_ENMO_0-24hr Intercept from intensity gradient analysis proposed by Rowlands et al. 2018 based on metric ENMO for the time segment 0 to 24 hours
ig_rsquared_ENMO_0-24hr r squared from intensity gradient analysis proposed by Rowlands et al. 2018 based on metric ENMO for the time segment 0 to 24 hours

Data_quality_report (csv)

The data_quality_report.csv is stored in subfolder folder results/QC.

(Part of) variable name Description
filename file name
file.corrupt Is file corrupt? TRUE or FALSE (mainly tested for GENEActiv bin files)
file.too.short File too short for processing? (definition) TRUE or FALSE
use.temperature Temperature used for auto-calibration? TRUE or FALSE
scale.x Auto-calibration scaling coefficient for x-axis (same for y and z axis, not shown here)
offset.x Auto-calibration offset coefficient for x-axis (same for y and z axis, not shown here)
temperature.offset.x Auto-calibration temperature offset coefficient for x-axis (same for y and z axis, not shown here)
cal.error.start Calibration error prior to auto-calibration
cal.error.end Calibration error after auto-calibration
n.10sec.windows Number of 10 second epochs used as sphere data in auto-calibration
n.hours.considered Number of hours of data considered for auto-calibration
QCmessage Character QC message at the end of the auto-calibration
mean.temp Mean temperature in sphere data
device.serial.number Device serial number
NFilePagesSkipped (Only for Axivity .cwa format) Number of raw data blocks skipped
filehealth_totimp_min (Only for Axivity .cwa, ActiGraph gt3x, and ad-hoc csv format) Total number of minutes of raw data imputed
filehealth_checksumfail_min (Only for Axivity .cwa format) Total number of minutes of raw data where the checksum failed
filehealth_niblockid_min (Only for Axivity .cwa format) Total number of minutes of raw data with non-incremental block ids
filehealth_fbias0510_min (Only for Axivity .cwa format) Total number of minutes with a sampling frequency bias between 5 and 10%
filehealth_fbias1020_min (Only for Axivity .cwa format) Total number of minutes with a sampling frequency bias between 10 and 20%
filehealth_fbias2030_min (Only for Axivity .cwa format) Total number of minutes with a sampling frequency bias between 20 and 30%
filehealth_fbias30_min (Only for Axivity .cwa format) Total number of minutes with a sampling frequency bias higher than 30%
filehealth_totimp_N (Only for Axivity .cwa, ActiGraph gt3x, and ad-hoc csv format) Total number of data blocks that were imputed
filehealth_checksumfail_N (Only for Axivity .cwa format) Total number of blocks where the checksum failed
filehealth_niblockid_N (Only for Axivity .cwa format) Total number of raw data blocks with non-incremental block ids
filehealth_fbias0510_N (Only for Axivity .cwa format) Total number of raw data blocks with a sampling frequency bias between 5 and 10%
filehealth_fbias1020_N (Only for Axivity .cwa format) Total number of raw data blocks with a sampling frequency bias between 10 and 20%
filehealth_fbias2030_N (Only for Axivity .cwa format) Total number of raw data blocks with a sampling frequency bias between 20 and 30%
filehealth_fbias30_N (Only for Axivity .cwa format) Total number of raw data blocks with a sampling frequency bias higher than 30%

GGIR Part 3

GGIR part 3, only outputs RData files which are used by GGIR part 4 and 5. The RData files are not intended for direct use by the GGIR user.

GGIR Part 4

Part 4 generates the following output:

Night level summaries (csv)

  • part4_nightsummary_sleep_cleaned.csv
  • QC/part4_nightsummary_sleep_full.csv

The latter with ‘_full’ in the name is intended to aid clarifying why some nights (if any) are excluded from the cleaned summary report. Although, nights where the accelerometer was not worn at all are excluded from this. So, if you have a 30 day recording where the accelerometer was not worn from day 7 onward then you will not find the last 22 nights in either csv-report.

The csv. files contain the variables as shown below.

(Part of) variable name Description
ID Participant ID extracted from file
night Number of the night in the recording
sleeponset Detected onset of sleep expressed as hours since the midnight of the previous night.
wakeup Detected waking time (after sleep period) expressed as hours since the midnight of the previous night.
SptDuration Difference between onset and waking time.
sleepparam Definition of sustained inactivity by accelerometer.
guider guider used as discussed in paragraph Sleep analysis.
guider_onset Start of Sleep Period Time window derived from the guider.
guider_wake End of Sleep Period Time window derived guider.
guider_SptDuration Time SPT duration derived from guider_wake and guider_onset.
error_onset Difference between sleeponset and guider_onset
error_wake Difference between wakeup and guider_wake
fraction_night_invalid Fraction of the night (noon-noon or 6pm-6pm) for which the data was invalid, e.g. monitor not worn or no accelerometer measurement started/ended within the night.
SleepDurationInSpt Total sleep duration, which equals the accumulated nocturnal sustained inactivity bouts within the Sleep Period Time.
duration_sib_wakinghours Accumulated sustained inactivity bouts during the day. These are the periods we would label during the night as sleep, but during the day they form a subclass of inactivity, which may represent day time sleep or wakefulness while being motionless for a sustained period of time number_sib_sleepperiod} Number of nocturnal sleep periods, with nocturnal referring to the Sleep Period Time window.
duration_sib_wakinghours_atleast15min Same as duration_sib_wakinghours, but limited to SIBs that last at least 15 minutes.
num ber_sib_wakinghours Number of sustained inactivity bouts during the day, with day referring to the time outside the Sleep Period Time window.
sleeponset_ts sleeponset formatted as a timestamp
wakeup_ts wakeup formatted as a timestamp
guider_onset_ts guider_onset formatted as a timestamp
guider_wake_ts guider_wake formatted as a timestamp
page pdf page on which the visualisation can be found
daysleeper If 0 then the person is a nightsleeper (sleep period did not overlap with noon) if value=1 then the person is a daysleeper (sleep period did overlap with noon)
weekday Day of the week on which the night started
calendardate Calendar date on which the night started in day/month/year format.
filename Name of the accelerometer file
cleaningcode see paragraph Cleaningcode
sleeplog_used Whether a sleep log was used (TRUE/FALSE)
acc_available Whether accelerometer data was available (TRUE/FALSE).
WASO Wake After Sleep Onset: SptDuration - SleepDurationInSpt
SptDuration Sleep Period Time window duration: wakeup - sleeponset
error_onset Difference between sleeponset and guider_onset (this variable is only available in the full report as stored in the QC folder)
error_wake Difference between wakeup and guider_wake (this variable is only available in the full report as stored in the QC folder)
SleepRegularityIndex The Sleep Regularity Index as proposed by Phillips et al. 2017, but calculated per day-pair to enable user to study patterns across days
SriFractionValid Fraction of the 24 hour period that was valid in both current as well as in matching timestamps for the next calendar day. See GGIR function manual for details
nonwear_perc_spt Non-wear percentage during the spt hours of this day. This is a copy of the nonwear_perc_spt calculated in part 5, only included in part 4 reports if part 5 has been run with timewindow = WW

Non-default variables in part 4 csv report

These additional are only stored if you used a sleeplog that captures time in bed, or when using guider HorAngle for hip-worn accelerometer data. If either of these applies set argument sleepwindowType to “TimeInBed”.

(Part of) variable name Description
guider_guider_inbedStart Time of getting in bed
guider_guider_inbedEnd Time of getting out of bed
guider_inbedDuration Time in Bed: guider_inbedEnd - guider_inbedStart
sleepefficiency Sleep efficiency, calculated by one of two metrics as controlled by argument sleepefficiency.metric: SleepDurationInSpt / guider_inbedDuration (default) or SleepDurationInSpt / (SptDuration + latency)
sleeplatency Sleep latency, calculated as: sleeponset - guider_inbedStart

Person level summaries (csv)

  • part4_summary_sleep_cleaned.csv
  • QC/part4_summary_sleep_full.csv

In the person level report the variables are derived from the variables in the night level summary. Minor extensions to the variable names explain how variables are aggregated across the days. Please find below extra clarification on a few of the variable names for which the meaning may not be obvious:

(Part of) variable name Description
_mn mean across days
_sd standard deviation across days
_AD All days
_WE Weekend days
_WD Week days
sleeplog_used Whether a sleeplog was available (TRUE) or not (FALSE)
sleep_efficiency_after_onset Accelerometer derived sleep efficiency within the sleep period time calculated as the ratio between acc_SleepDurationInSpt and guider_SptDuration (denominator) or acc_SleepDurationInSpt and acc_SptDuration + latency (denominator), as defined with sleepefficiency.metric. Only available at person level, because at night level the user can calculate this from existing variables.
n_nights_acc Number of nights of accelerometer data
n_nights_sleeplog Number of nights of sleeplog data.
n_WE_nights_complete Number of weekend nights complete which means both accelerometer and estimate from guider.
n_WD_nights_complete Number of weekday nights complete which means both accelerometer and estimate from guider.
n_WEnights_daysleeper Number of weekend nights on which the person slept until after noon.
n_WDnights_daysleeper Number of weekday nights on which the person slept until after noon.
duration_sib_wakinghour Total duration of sustained inactivity bouts during the waking hours.
number_sib_wakinghours Number of sustained inactivity bouts during the waking hours.
average_dur_sib_wakinghours Average duration of the sustained inactivity bouts during the day (outside the sleep period duration). Calculated as duration_sib_wakinghour divided by number_sib_wakinghours per day, after which the mean and standard deviation are calculated across days.

Visualisation (pdf)

Visualisation to support data quality checks: - visualisation_sleep.pdf (optional)

When input argument do.visual is set to TRUE GGIR can show the following visual comparison between the time window of being asleep (or in bed) according to the sleeplog and the detected sustained inactivity bouts according to the accelerometer data. This visualisation is stored in the results folder as visualisation_sleep.pdf.

Explanation of the image: Each line represents one night. Colours are used to distinguish definitions of sustained inactivity bouts (2 definitions in this case) and to indicate existence or absence of overlap with the sleeplog. When argument outliers.only is set to FALSE it will visualise all available nights in the dataset. If outliers.only is set to TRUE it will visualise only nights with a difference in onset or waking time between sleeplog and sustained inactivity bouts larger than the value of argument criterror.

This visualisation with outliers.only set to TRUE and critererror set to 4 was very powerful to identify entry errors in sleeplog data in van Hees et al PLoSONE 2015. We had over 25 thousand nights of data, and this visualisation allowed us to quickly zoom in on the most problematic nights to investigate possible mistakes in GGIR or mistakes in data entry.

Example visualisation GGIR part 4

GGIR Part 5

The output of part 5 is dependent on the parameter configuration, it will generate as many output files as there are unique combination of the three thresholds provided.

For example, the following files will be generated if the threshold configuration was 30 for light activity, 100 for moderate and 400 for vigorous activity:

  • part5_daysummary_MM_L30M100V400_T5A5.csv
  • part5_daysummary_WW_L30M100V400_T5A5.csv
  • part5_personsummary_MM_L30M100V400_T5A5.csv
  • part5_personsummary_WW_L30M100V400_T5A5.csv
  • file summary reports/Report_nameofdatafile.pdf

Day level summary (csv)

(Term in) variable name Description
sleeponset onset of sleep expressed in hours since the midnight in the night preceding the night of interest, e.g. 26 is 2am.
wakeup waking up time express in the same way as sleeponset.
sleeponset_ts onset of sleep expressed as a timestamp hours:minutes:seconds
daysleeper if 0 then the person woke up before noon, if 1 then the person woke up after noon
cleaningcode See paragraph Cleaningcode.
dur_day_spt_min Total length of daytime waking hours and spt combined (typically 24 hours for MM report).
dur_ duration of a behavioral class that will be specified int he rest of the variable name
ACC_ (average) acceleration according to default metric specific by acc.metric
_spt_wake_ Wakefulness within the Sleep period time window.
_spt_sleep_ Sleep within the Sleep period time window.
_IN_ Inactivity. Note that we use the term inactivity instead of sedentary behaviour for the lowest intensity level of behaviour. The reason for this is that GGIR does not attempt to classifying the activity type sitting at the moment, by which we feel that using the term sedentary behaviour would fail to communicate that.
_LIG_ Light activity
_MOD_ Moderate activity
_VIG_ Vigorous activity
_MVPA_ Moderate or Vigorous activity
_unbt_ Unbouted
_bts_ Bouts (also known as sojourns), which are segments that for which the acceleration is within a specified range for a specified fraction of the time.
_bts_1_10_ Bouts lasting at least 1 minute and less than 10 minutes (1 and 9.99 minutes are included, but 10 minutes is not).
Nblock number of blocks of a certain behavioral class, not these are not bouts but a count of the number of times the behavioral class occurs without interruptions.
WW in filename refers to analyses based on the timewindow from waking to waking up
MM in filename refers to analyses done on windows between midnight and midnight
calendar_date calendar date on which the window started in day/month/year format. So, for WW window this could mean that you have two windows starting on the same date.
weekday weekday on which the window started. So, for WW window this could mean that you have two windows starting on the weekday.
_total_IN total time spent in inactivity (no distinction between bouted or unbouted behavior, this is a simple count of the number of epochs that meet the threshold criteria.
_total_LIG total time spent in light activity.
nonwear_perc_day Non-wear percentage during the waking hours of this day.
nonwear_perc_spt Non-wear percentage during the spt hours of this day.
nonwear_perc_day_spt Non-wear percentage during the whole day, including waking and spt.
dur_day_min Duration of waking hours within this day window
dur_spt_min Duration of Sleep Period Time within this day window.
dur_day_spt_min Duration this day window, including both waking hours and SPT.
sleep_efficiency_after_onset sleep_efficiency_after_onset in part 5 is not the same as in part 4, but calculated as the percentage of sleep within the sleep period time window. The conventional approach is the approach used in part 4.
ig_ All variables related to intensity gradient analysis
_gradient Gradient from intensity gradient analysis proposed by Rowlands et al. 2018 for the waking hours window (_day_) and for the full window (_day_spt_)
_intercept Intercept from intensity gradient analysis proposed by Rowlands et al. 2018 for the waking hours window (_day_) and for the full window (_day_spt_)
_rsquared r squared from intensity gradient analysis proposed by Rowlands et al. 2018 for the waking hours window (_day_) and for the full window (_day_spt_)

Fragmentation

(Term in) variable name Description
FRAG_ All variables related to behavioural fragmentation analysis
TP_ Transition probability
PA2IN Physical activity fragments followed by inactivity fragments
IN2PA Physical inactivity fragments followed by activity fragments
Nfrag Number of fragments
IN2LIPA Inactivity fragments followed by LIPA
IN2MVPA Inactivity fragments followed by MVPA
mean_dur mean duration of a fragment category
Gini_dur Gini index
CoV_dur Coefficient of Variation
alpha Power law exponent
x0.5 Derived from power law exponent alpha, see Chastin et al. 201 0
W0.5 Derived from power law exponent alpha, see Chastin et al. 201 0

Old napping behaviour variables (to be deprecated)

These variables will be deprecated as napping, if detection is turned on, is now a behavioural category just like all other behaviours.

(Term in) variable name Description
nap_count Total number of naps, only calculated when argument do.sibreport = TRUE, currently optimised for 3.5-year olds. See function documentation for function g.part5.classifyNaps in the GGIR function documentation (pdf).
nap_totalduration Total nap duration, only calculated when argument do.sibreport = TRUE, currently optimised for 3.5-year old. See function documentation for function g.part5.classifyNaps in the GGIR function documentation (pdf).
sibreport_n_items Only created if do.sibreport = TRUE. Number of items in the sibreport
sibreport_n_items_day Only created if do.sibreport = TRUE. Number of items in the sibreport for this specific day
nbouts_X Only created if do.sibreport = TRUE. Number of bouts in a day of X where X can be a detected nap (denap), srnap (self-reported nap) or srnonw (self-reported nonwear)
noverl_X Only created if do.sibreport = TRUE. Number of overlapping bouts in a day of X where X can be denap_srnap, denap_srnonw, srnap_denap, or srnonw_denap
frag_mean_dur_X_day Only created if do.sibreport = TRUE. Mean duration of X per day, where X can be sib, srnap or srnonw
dur_X_min Only created if do.sibreport = TRUE. Total duration in minutes of X per day, where X can be detect nap (denap), srnap or srnonw
mdur_X_overl_Y Only created if do.sibreport = TRUE. Mean duration of the overlap between X and Y, which are combinations of denap, srnap or srnonw
tdur_X_overl_Y Only created if do.sibreport = TRUE. Total duration in minutes of the overlap between X and Y, which are combinations of denap, srnap or srnonw
perc_X_overl_Y Only created if do.sibreport = TRUE. Percentage of overlap between X and Y, which are combinations of denap, srnap or srnonw

Special note if you are working on compositional data analysis:

The duration of all dur_ variables that have _total_ in their name should add up to the total length of the waking hours in a day. Similarly, the duration of all other dur_ variables excluding the variables _total_ in their name and excluding the variable with dur_day_min, dur_spt_min, and dur_day_spt_min should also add up to the length of the full day.

Motivation for default boutcriter.in = 0.9:

The idea is that if you allow for bouts of 30 minutes it would not make sense to allow for breaks of 20 percent (6 minutes!) this is why I used a more stringent criteria for the highest category. Please note that you can change these criteria via arguments boutcriter.mvpa, boutcriter.in, and boutcriter.lig.

Person level summary (csv)

Most variables in the person level summary are derived from the day level summary, but extended with _pla to indicate that the variable was calculated as the plain average across all valid days. Variables extended with _wei represent the weighted average of across all days where weekend days always weighted 2/5 relative to the contribution of week days.

Variable name Description
Nvaliddays Total number of valid days.
Nvaliddays_WD Number of valid week days.
Nvaliddays_WE Number of valid weekend days, where the days that start on Saturday or Sunday are considered weekend.
NcleaningcodeX Number of days that had cleaning code X for the corresponding sleep analysis in part 4. In case of MM analysis this refers to the night at the end of the day.
Nvaliddays_AL10F_WD Number of valid week days with at least 10 fragments (5 inactivity or 5 inactive)
Nvaliddays_AL10F_WE Number of valid weekend days with at least 10 fragments (5 inactivity or 5 inactive)
_wei weighted average of weekend and week days, using a 2/5 ratio, see above.
_pla plain average of all days, see above

GGIR Part 6

Part 6 only stores a person level summary (csv). Most column names overlap with part 5, but are now derived based on the for the full time series only, whereas part 5 only presents these variables per day window which is then aggregated at person level.

Variable name Description
L5TIME Timing of least active 5hrs, expressed as timestamp in the day
M5TIME Timing of most active 5hrs
L5TIME_num, M5TIME_num Timing of least/most active 5hrs, expressed as hours in the day. Note that L5/M5 timing variables are difficult to average across days because 23:00 and 1:00 would average to noon and not to midnight. So, caution is needed when interpreting person averages.
L5VALUE Acceleration value for least active 5hrs
M5VALUE Acceleration value for most active 5hrs